Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1978 May;22(2):307-40.
doi: 10.1016/S0006-3495(78)85491-5.

Interactions in cation permeation through the gramicidin channel. Cs, Rb, K, Na, Li, Tl, H, and effects of anion binding

Interactions in cation permeation through the gramicidin channel. Cs, Rb, K, Na, Li, Tl, H, and effects of anion binding

G Eisenman et al. Biophys J. 1978 May.

Abstract

As a prototype for binding and interaction in biological Na and K channels, the single channel conductances for Li, Na, K, Rb, Cs, H, and Tl and the membrane potentials for Tl-K mixtures are characterized for gramicidin A over wider concentration rangers than previously and analyzed using an "equilibrium domain" model that assumes a central rate-determining barrier. Peculiarities in the conductance-concentration relationship for TlF, TlNO3, and TlAc suggest that anions bind to Tl-loaded channels, and the theory is extended to allow for this. For concreteness, the selectivity of cation permeation is characterized in terms of individual binding and rate constants of this model, with the conclusions that the strongest site binds Cs greater than Rb greater than K greater than Na greater than Li, while the next strongest binds Na greater than K greater than Li greater than Rb greater than Cs. However, because Schagina, Grinfeldt, and Lev's recent finding of single filing (personal communication) indicates that the channel sites in gramicidin cannot be at equilibrium with the solution, and work in progress with Hägglund and Enos (Biophys. J. 21:26a. [Abstr.]) indicates that the simplest model adequate to account for the observed concentration-dependences of flux-ratio, conductance, I--V characteristic, and permeability has three barriers and four sites, some implications of additional rate-determining barriers at the mouth of the channel are discussed. The results are summarized using phenomenological "experimental" parameters that provide a model-independent way to represent that data concisely and which can be interpreted physically in terms of any desired model.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Membr Biol. 1976 Dec 25;30(1):1-44 - PubMed
    1. Membranes. 1975;3:255-323 - PubMed
    1. Biomembranes. 1972;3:127-53 - PubMed
    1. J Membr Biol. 1974;18(1):61-80 - PubMed
    1. Biophys J. 1972 Jun;12(6):683-702 - PubMed

Publication types