Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Jun 1;308 ( Pt 2)(Pt 2):419-23.
doi: 10.1042/bj3080419.

Amino acids important in enzyme activity and dimer stability for Drosophila alcohol dehydrogenase

Affiliations

Amino acids important in enzyme activity and dimer stability for Drosophila alcohol dehydrogenase

S W Chenevert et al. Biochem J. .

Abstract

We have determined the nucleotide sequences of eight ethyl methanesulphonate-induced mutants in Drosophila alcohol dehydrogenase (ADH), of which six were previously characterized by Hollocher and Place [(1988) Genetics 116, 253-263 and 265-274]. Four of these ADH mutants contain a single amino acid change: glycine-17 to arginine, glycine-93 to glutamic acid, alanine-159 to threonine, and glycine-184 to aspartic acid. Although these mutants are inactive, three mutants (Gly17Arg, Gly93Glu and Gly184Asp) form stable homodimers, as well as heterodimers with wild-type ADH, in which the wild-type ADH subunit retains full enzyme activity [Hollocher and Place (1988) Genetics 116, 265-274]. Interestingly, the Ala159Thr mutant does not form either stable homodimers or heterodimers with wild-type ADH, suggesting that alanine-159 is important in stabilizing ADH dimers. The mutations were analysed in terms of a three-dimensional model of ADH using bacterial 20 beta-hydroxysteroid dehydrogenase and rat dihydropteridine reductase as templates. The model indicates that mutations in glycine-17 and glycine-93 affect the binding of NAD+. It also shows that alanine-159 is part of a hydrophobic anchor on the dimer interface of ADH. Replacement of alanine-159 with threonine, which has a larger side chain and can hydrogen bond with water, is likely to reduce the strength of the hydrophobic interaction. The three-dimensional model shows that glycine-184 is close to the substrate binding site. Replacement of glycine-184 with aspartic acid is likely to alter the position of threonine-186, which we propose hydrogen bonds to the carboxamide moiety of NAD+. Also, the negative charge on the aspartic acid side chain may interact with the substrate and/or residues in the substrate binding site. These mutations provide information about ADH catalysis and the stability of dimers, which may also be useful in understanding homologous dehydrogenases, which include the human 17 beta-hydroxysteroid, 11 beta-hydroxysteroid and 15-hydroxyprostaglandin dehydrogenases.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Proc Natl Acad Sci U S A. 1994 Jun 7;91(12):5582-6 - PubMed
    1. FEBS Lett. 1992 Aug 24;308(3):235-9 - PubMed
    1. FEBS Lett. 1994 Dec 12;356(1):81-5 - PubMed
    1. FEBS Lett. 1993 Mar 15;319(1-2):90-4 - PubMed
    1. Steroids. 1994 Apr;59(4):248-58 - PubMed

Publication types

Substances

LinkOut - more resources