Theoretical basis of one-dimensional genome scanning: a direct method to identify the site of a mutation
- PMID: 7774557
- DOI: 10.1002/elps.1150160131
Theoretical basis of one-dimensional genome scanning: a direct method to identify the site of a mutation
Abstract
Genome scanning is a technique designed to uncover a net genetic difference between otherwise identical DNA samples. As such, it can be used to directly identify the site of a gene mutation, facilitating the cloning of DNA fragments from that site. Unlike other conventional positional cloning methods, one-dimensional genome scanning does not require prior knowledge of the location of the gene or mutation nor does it require closely linked markers. Rather, this method can directly identify the site of a net genomic change, such as a deletion or duplication caused by a mutation. Thus, the genome scanning method can be used in place of classic positional cloning strategies because prior positioning or mapping of the objective gene is unnecessary. By using this approach, we have identified and cloned a DNA fragment duplicated in the p(un) mutation of the mouse pink-eyed dilution locus (Brilliant et al., Science 1991, 252, 566-569). However, no other similar attempt using one-dimensional genome scanning has been reported so far, in spite of the simplicity of the procedure and its success in identifying and ultimately characterizing the pink-eyed dilution gene of the mouse. The lack of other reports of its success are perhaps not because of the practical difficulties of this method, but may be due to the false presumption that the probability for directly identifying the mutation site using genome scanning is extremely low. The theoretical probability was calculated and is presented here.(ABSTRACT TRUNCATED AT 250 WORDS)
Similar articles
-
Direct molecular identification of the mouse pink-eyed unstable mutation by genome scanning.Science. 1991 Apr 26;252(5005):566-9. doi: 10.1126/science.1673574. Science. 1991. PMID: 1673574
-
One-dimensional genome scanning: identification of the basis of a mouse mutation and identification of genomic changes in ovarian carcinoma.Electrophoresis. 1995 Feb;16(2):163-7. doi: 10.1002/elps.1150160129. Electrophoresis. 1995. PMID: 7774555
-
High-frequency genetic reversion mediated by a DNA duplication: the mouse pink-eyed unstable mutation.Proc Natl Acad Sci U S A. 1993 Jan 1;90(1):297-301. doi: 10.1073/pnas.90.1.297. Proc Natl Acad Sci U S A. 1993. PMID: 8419934 Free PMC article.
-
High-speed positional cloning based on restriction landmark genome scanning.Methods. 1997 Dec;13(4):359-77. doi: 10.1006/meth.1997.0544. Methods. 1997. PMID: 9480782 Review.
-
Genetic mapping of restriction landmark genomic scanning loci in the mouse.Electrophoresis. 1995 Feb;16(2):233-40. doi: 10.1002/elps.1150160139. Electrophoresis. 1995. PMID: 7774564 Review.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials