Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Jun;80(6):1967-71.
doi: 10.1210/jcem.80.6.7775647.

Human chorionic gonadotropin-dependent expression of vascular endothelial growth factor/vascular permeability factor in human granulosa cells: importance in ovarian hyperstimulation syndrome

Affiliations

Human chorionic gonadotropin-dependent expression of vascular endothelial growth factor/vascular permeability factor in human granulosa cells: importance in ovarian hyperstimulation syndrome

J Neulen et al. J Clin Endocrinol Metab. 1995 Jun.

Abstract

Ovarian hyperstimulation syndrome (OHSS) is a severe complication arising from controlled ovarian stimulation treatment. This iatrogenic condition is potentially lethal and occurs in 0.3-5% of stimulated ovarian cycles. hCG exacerbates OHSS. The pathophysiology of OHSS is still unknown; therefore, treatment regimens are aimed at ameliorating symptoms. Prominent features of OHSS are an elevated risk of thromboembolism due to enhanced production of von Willebrand factor by endothelial cells and ascites, or pulmonary edema due to increased vascular permeability followed by third space fluid accumulation. Both of these sequelae can be evoked by vascular endothelial growth factor (VEGF), also known as vascular permeability factor (VPF). High concentrations of VEGF/VPF have been demonstrated in ascitic fluid from patients with OHSS, but the source of VEGF/VPF in these patients remained unidentified. Here we report that the messenger ribonucleic acid expression of VEGF/VPF in human luteinized granulosa cells (GCs) is dose and time dependently enhanced by hCG in vitro. Furthermore, VEGF/VPF proteins are produced by GCs. Our results suggest that the effects of hCG on the development and course of OHSS may be mediated by the production of VEGF/VPF by GCs.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources