Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 May 26;249(1):11-28.
doi: 10.1006/jmbi.1995.9889.

Addition of a 29 residue carboxyl-terminal tail converts a simple HMG box-containing protein into a transcriptional activator

Affiliations
Free article

Addition of a 29 residue carboxyl-terminal tail converts a simple HMG box-containing protein into a transcriptional activator

D J Dairaghi et al. J Mol Biol. .
Free article

Abstract

Human mitochondrial transcription factor A (h-mtTFA) is essential for initiation of transcription from the two promoters located in the displacement-loop region of human mitochondrial DNA. This 25 kDa protein contains two tandem, HMG box DNA-binding domains separated by a 27 amino acid residue linker region and followed by a 25 residue carboxyl-terminal tail; both the linker and tail are rich in basic amino acid residues. Mutational analysis of h-mtTFA revealed that the tail region is important for specific DNA recognition and essential for transcriptional activation. The critical role of the human tail in transcription was confirmed by constructing chimeric proteins that exchanged similar regions between h-mtTFA and its Saccharomyces cerevisiae homolog, sc-mtTFA. Wild-type sc-mtTFA is unable to activate transcription from the human mitochondrial light-strand promoter (LSP). Addition of the human tail region to sc-mtTFA conferred LSP-specific promoter activation. In all of the different h-mtTFA mutations tested, transcriptional activation was correlated with specific DNA-binding activity, suggesting that these two functions may be inseparable, a situation entirely consistent with previous mutational analyses of human mitochondrial promoters.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources