Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Mar;65(2):477-83.
doi: 10.1016/0306-4522(94)00476-l.

Interaction of convergent pathways that inhibit N-type calcium currents in sensory neurons

Affiliations

Interaction of convergent pathways that inhibit N-type calcium currents in sensory neurons

M Diversé-Pierluissi et al. Neuroscience. 1995 Mar.

Abstract

Norepinephrine and GABA inhibit omega-conotoxin GVIA-sensitive (N-type) calcium current in embryonic sensory neurons by separate pathways. We have investigated the mechanisms that limit the modulation of N current by varying the level of activation for a single pathway or simultaneously activating multiple pathways. Calcium currents were measured with tight-seal, whole-cell recording methods. Simultaneous application of the two transmitters at saturating concentrations produced a larger inhibition of the current than either transmitter by itself, but the maximal inhibition was not linearly additive. Maximal, direct activation of GTP-binding proteins by intracellular application of guanosine 5'-(3-O-thio)-triphosphate (GTP gamma S) resulted in a similar limit to the inhibition; furthermore, GTP gamma S did not enhance the maximal inhibition produced by co-application of transmitters. Interventions downstream in the modulatory pathway (e.g. direct activation of protein kinase C or inhibition of protein phosphatases) were also unable to alter the maximal limit for inhibition. These results suggest that transmitter-mediated inhibition is not limited by receptor number, levels of G-protein or protein kinase C activation, or degree of phosphorylation; rather, the extent of inhibition may be limited by the structural properties of the N channels themselves.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources