Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1995 Feb 28;347(1321):235-48.
doi: 10.1098/rstb.1995.0024.

Leg design and jumping technique for humans, other vertebrates and insects

Affiliations
Comparative Study

Leg design and jumping technique for humans, other vertebrates and insects

R M Alexander. Philos Trans R Soc Lond B Biol Sci. .

Abstract

Humans, bushbabies, frogs, locusts, fleas and other animals jump by rapidly extending a pair of legs. Mathematical models are used to investigate the effect muscle properties, leg design and jumping technique have on jump height. Jump height increases with increased isometric force exerted by leg muscles, their maximum shortening speeds and their series compliances. When ground forces are small multiples of body mass (as for humans), countermovement and catapult jumps are about equally high, and both are much better than squat jumps. Vertebrates have not evolved catapult mechanisms and use countermovement jumps instead. When ground forces are large multiples of body mass, catapult jumps (as used by locusts and fleas) are much higher than the other styles of jump could be. Increasing leg mass reduces jump height, but the proximal-to-distal distribution of leg mass has only a minor effect. Longer legs make higher jumps possible and additional leg segments, such as the elongated tarsi of bushbabies and frogs, increase jump height even if overall leg length remains unchanged. The effects of muscle moment arms that change as the leg extends, and of legs designed to work over different ranges of joint angle, are investigated.

PubMed Disclaimer

Publication types

LinkOut - more resources