Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1995;67(3):261-79.
doi: 10.1007/BF00873690.

Physiological and technological aspects of large-scale heterologous-protein production with yeasts

Affiliations
Review

Physiological and technological aspects of large-scale heterologous-protein production with yeasts

M C Hensing et al. Antonie Van Leeuwenhoek. 1995.

Abstract

Commercial production of heterologous proteins by yeasts has gained considerable interest. Expression systems have been developed for Saccharomyces cerevisiae and a number of other yeasts. Generally, much attention is paid to the molecular aspects of heterologous-gene expression. The success of this approach is indicated by the high expression levels that have been obtained in shake-flask cultures. For large-scale production however, possibilities and restrictions related to host-strain physiology and fermentation technology also have to be considered. In this review, these physiological and technological aspects have been evaluated with the aid of numerical simulations. Factors that affect the choice of a carbon substrate for large-scale production involve price, purity and solubility. Since oxygen demand and heat production (which are closely linked) limit the attainable growth rate in large-scale processes, the biomass yield on oxygen is also a key parameter. Large-scale processes impose restrictions on the expression system. Many promoter systems that work well in small-scale systems cannot be implemented in industrial environments. Furthermore, large-scale fed-batch fermentations involve a substantial number of generations. Therefore, even low expression-cassette instability has a profound effect on the overall productivity of the system. Multicopy-integration systems may provide highly stable expression systems for industrial processes. Large-scale fed-batch processes are typically performed at a low growth rate. Therefore, effects of a low growth rate on the physiology and product formation rates of yeasts are of key importance. Due to the low growth rates in the industrial process, a substantial part of the substrate carbon is expended to meet maintenance-energy requirements. Factors that reduce maintenance-energy requirements will therefore have a positive effect on product yield. The relationship between specific growth rate and specific product formation rate (kg product.[kg biomass]-1.h-1) is the main factor influencing production levels in large-scale production processes. Expression systems characterized by a high specific rate of product formation at low specific growth rates are highly favourable for large-scale heterologous-protein production.

PubMed Disclaimer

References

    1. Yeast. 1992 Jun;8(6):423-88 - PubMed
    1. Yeast. 1992 May;8(5):361-72 - PubMed
    1. Trends Biotechnol. 1993 Oct;11(10):430-3 - PubMed
    1. Appl Microbiol Biotechnol. 1991 Apr;35(1):46-30 - PubMed
    1. Cell. 1979 Apr;16(4):739-51 - PubMed

Publication types

LinkOut - more resources