Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1995 Mar 1;26(1):21-30.
doi: 10.1016/0888-7543(95)80078-z.

Efficient pooling designs for library screening

Affiliations
Free article
Comparative Study

Efficient pooling designs for library screening

W J Bruno et al. Genomics. .
Free article

Abstract

We describe efficient methods for screening clone libraries, based on pooling schemes that we call "random k-sets designs." In these designs, the pools in which any clone occurs are equally likely to be any possible selection of k from the v pools. The values of k and v can be chosen to optimize desirable properties. Random k-sets designs have substantial advantages over alternative pooling schemes: they are efficient, flexible, and easy to specify, require fewer pools, and have error-correcting and error-detecting capabilities. In addition, screening can often be achieved in only one pass, thus facilitating automation. For design comparison, we assume a binomial distribution for the number of "positive" clones, with parameters n, the number of clones, and c, the coverage. We propose the expected number of resolved positive clones--clones that are definitely positive based upon the pool assays--as a criterion for the efficiency of a pooling design. We determine the value of k that is optimal, with respect to this criterion, as a function of v, n, and c. We also describe superior k-sets designs called k-sets packing designs. As an illustration, we discuss a robotically implemented design for a 2.5-fold-coverage, human chromosome 16 YAC library of n = 1298 clones. We also estimate the probability that each clone is positive, given the pool-assay data and a model for experimental errors.

PubMed Disclaimer

Publication types

LinkOut - more resources