Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1995 Jul;48(7):917-26.
doi: 10.1016/0895-4356(94)00202-2.

Selecting a patient characteristics index for the prediction of medical outcomes using administrative claims data

Affiliations
Comparative Study

Selecting a patient characteristics index for the prediction of medical outcomes using administrative claims data

C Melfi et al. J Clin Epidemiol. 1995 Jul.

Abstract

Recently, there has been a great deal of discussion regarding the use of administrative databases to study outcomes of medical care. A major issue in this discussion is how to classify patients in terms of characteristics such as disease-severity, comorbidities, resource needs, stability, etc. Different indices have been developed in an attempt to provide a common classification scheme in terms of these characteristics. In this paper, we examine the utility of four indices in the prediction of length of stay and 30-day mortality for patients undergoing total knee replacement surgery between 1985 and 1989. The indices that we compare are the Deyo-adapted Charlson Index, the Relative Intensity Score derived from Patient Management Categories (PMCs), the Patient Severity Level derived from PMCs, and the number of diagnoses (up to five) listed in the Medicare claims data. The first three of these indices represent measures of comorbidity, resource use, and severity of illness, respectively. The number of diagnoses is likely to capture aspects of each of these characteristics. We find that all of the indices improve (in terms of model fit) over the baseline (no index) models of length of stay and mortality, and the Relative Intensity Score and Patient and Severity Level result in the greatest improvement in measures of model fit. We found, however, that these two indices have a non-monotonic relationship with length of stay and mortality. The Deyo-adapted Charlson Index performed least well of the four indices in terms of explanatory ability. The number of diagnoses performed well, and does not suffer from problems associated with miscoding on claims data.

PubMed Disclaimer

Publication types

LinkOut - more resources