Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1995 May;108(1):203-10.
doi: 10.1104/pp.108.1.203.

The choice of reducing substrate is altered by replacement of an alanine by a proline in the FAD domain of a bispecific NAD(P)H-nitrate reductase from birch

Affiliations
Comparative Study

The choice of reducing substrate is altered by replacement of an alanine by a proline in the FAD domain of a bispecific NAD(P)H-nitrate reductase from birch

T Schöndorf et al. Plant Physiol. 1995 May.

Abstract

Differences in the amino acid sequence between the bispecific NAD(P)H-nitrate reductase of birch (Betula pendula Roth) and the monospecific NADH-nitrate reductases of a variety of other higher plants have been found at the dinucleotide-binding site in the FAD domain. To pinpoint amino acid residues that determine the choice of reducing substrate, we introduced mutations into the cDNA coding for birch nitrate reductase. These mutations were aimed at replacing certain amino acids of the NAD(P)H-binding site by conserved amino acids located at identical positions in NADH-monospecific enzymes. The mutated cDNAs were integrated into the genome of tobacco by Agrobacterium-mediated transformation. Transgenic tobacco (Nicotiana tabacum) plants were grown on a medium containing ammonium as the sole nitrogen source to keep endogenous tobacco nitrate reductase activity low. Whereas some of the mutated enzymes showed a slight preference for NADPH, as does the nonmutated birch enzyme, the activity of some others greatly depended on the availability of NADH and was low with NADPH alone. Comparison of the mutations reveals that replacement of a single amino acid in the birch sequence (alanine871 by proline) is critical for the use of reducing substrate.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Mol Gen Genet. 1991 May;227(1):97-105 - PubMed
    1. Biotechniques. 1991 Oct;11(4):428-32 - PubMed
    1. Plant Mol Biol. 1992 May;19(1):15-38 - PubMed
    1. J Biochem. 1984 Aug;96(2):579-82 - PubMed
    1. Biochem J. 1992 Jun 15;284 ( Pt 3):781-8 - PubMed

Publication types

MeSH terms

LinkOut - more resources