Genetic approaches to cardiovascular disease. Supravalvular aortic stenosis, Williams syndrome, and long-QT syndrome
- PMID: 7788908
- DOI: 10.1161/01.cir.92.1.142
Genetic approaches to cardiovascular disease. Supravalvular aortic stenosis, Williams syndrome, and long-QT syndrome
Abstract
Background: Although family history can be an important risk factor for cardiovascular disease, relatively little is known about the nature of specific genetic risk factors. One approach to this problem is to identify and characterize genes responsible for inherited disorders in the hope that this information will also provide mechanistic insight into common forms of cardiovascular disease.
Methods and results: Over the last decade, it has become possible to identify genes that cause human disease by use of the techniques of molecular genetics, specifically genetic linkage analysis, positional cloning, and mutational analyses. We have used these techniques to study three inherited cardiovascular disorders: supravalvular aortic stenosis, Williams syndrome, and long-QT syndrome. We have discovered that the vascular pathology of supravalvular aortic stenosis and Williams syndrome results from mutations involving the elastin gene on chromosome 7q11.23. These mutations include intragenic deletions, translocations, and complete deletion of the elastin gene, suggesting that a quantitative reduction in elastin during vascular development is pathogenically important. To date, only the elastin gene has proved important for supravalvular aortic stenosis. By contrast, genetic linkage analyses in families with long-QT syndrome indicate that at least four distinct genes can cause this disorder. We have identified three LQT loci: LQT1 on chromosome 11p15.5, LQT2 on 7q35-36, and LQT3 on 3p21-24. Recently, we demonstrated that mutations in a putative cardiac potassium channel gene, HERG, are responsible for the chromosome 7-linked form of long-QT syndrome, whereas mutations in the cardiac sodium channel gene SCN5A cause the chromosome 3-linked form of this disorder. HERG mutations and potassium channel biophysics suggest a dominant-negative molecular mechanism and reduced repolarization currents. By contrast, SCN5A mutations probably cause subtle alterations of cardiac sodium channel function and prolonged depolarizing currents.
Conclusions: Molecular genetic analyses of long-QT syndrome, supravalvular aortic stenosis, and Williams syndrome have begun to unravel the mechanisms underlying these inherited disorders. Rapid genetic testing for Williams syndrome is now available using a simple cytogenetic test, fluorescence in situ hybridization, but additional work will be required for long-QT syndrome and autosomal-dominant supravalvular aortic stenosis. Improved diagnosis and mechanistic understanding of these disorders should lead to rational treatment and prevention.
Similar articles
-
Genetics, molecular mechanisms and management of long QT syndrome.Ann Med. 1998 Feb;30(1):58-65. doi: 10.3109/07853899808999385. Ann Med. 1998. PMID: 9556090 Review.
-
[Long QT syndrome].Nihon Rinsho. 1996 Mar;54(3):776-81. Nihon Rinsho. 1996. PMID: 8904236 Review. Japanese.
-
SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome.Cell. 1995 Mar 10;80(5):805-11. doi: 10.1016/0092-8674(95)90359-3. Cell. 1995. PMID: 7889574
-
The LQT syndromes--current status of molecular mechanisms.Z Kardiol. 1999 Apr;88(4):245-54. doi: 10.1007/s003920050283. Z Kardiol. 1999. PMID: 10408028 Review.
-
Genetic aspects of supravalvular aortic stenosis.Curr Opin Cardiol. 1998 May;13(3):214-9. Curr Opin Cardiol. 1998. PMID: 9649945 Review.
Cited by
-
Diffuse supravalvular aortic stenosis: surgical repair in adulthood.Cardiol Res Pract. 2009;2009:976190. doi: 10.4061/2009/976190. Epub 2009 Nov 4. Cardiol Res Pract. 2009. PMID: 20049320 Free PMC article.
-
Severe coronary artery disease in the absence of supravalvular stenosis in a patient with Williams syndrome.Pediatr Cardiol. 2005 Sep-Oct;26(5):665-7. doi: 10.1007/s00246-004-0845-8. Pediatr Cardiol. 2005. PMID: 15549615
-
Familial hypercholesterolemia supravalvular aortic stenosis and extensive atherosclerosis.Indian Heart J. 2018 Jul-Aug;70(4):575-577. doi: 10.1016/j.ihj.2018.01.006. Epub 2018 Jan 8. Indian Heart J. 2018. PMID: 30170656 Free PMC article.
-
Bilateral semilunar valve dysplasia in a patient with inverted duplication 2p25-22.Pediatr Cardiol. 2008 Jan;29(1):172-5. doi: 10.1007/s00246-007-9013-2. Epub 2007 Aug 4. Pediatr Cardiol. 2008. PMID: 17676371
-
Successful reconstructive surgery for isolated mitral insufficiency associated with Williams syndrome: report of a case.Surg Today. 2007;37(3):237-9. doi: 10.1007/s00595-006-3379-2. Epub 2007 Mar 9. Surg Today. 2007. PMID: 17342365
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous