Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 May;121(5):1361-72.
doi: 10.1242/dev.121.5.1361.

Cell fate control in the Drosophila retina by the orphan receptor seven-up: its role in the decisions mediated by the ras signaling pathway

Affiliations

Cell fate control in the Drosophila retina by the orphan receptor seven-up: its role in the decisions mediated by the ras signaling pathway

S Kramer et al. Development. 1995 May.

Abstract

Drosophila seven-up is an orphan receptor of the steroid receptor family that is required to specify photoreceptor neuron subtypes in the developing compound eye. Expression of seven-up is confined to four of the eight photoreceptor precursors, R3/R4/R1/R6. We show that misexpression of seven-up in any of the other cell types within the developing ommatidium interferes with their differentiation. Each cell type responds differently to seven-up misexpression. For example, ectopic expression in the non-neuronal cone cells using the sevenless promoter/enhancer (sev-svp) causes the cone cells to take on a neuronal identity. Ectopic expression of seven-up in R2/R5 using the rough enhancer (ro-svp) causes these neurons to lose aspects of their photoreceptor subtype identity while remaining neuronal. Each cell type appears to have a different developmental time window that is sensitive to misexpressed seven-up. The temporal order of responsiveness of each cell type to misexpressed seven-up is similar but not identical to the order of neuronal differentiation. This suggests that there are processes of specification that are distinct from the specification to become a photoreceptor neuron. We have identified members of the ras signaling pathway as suppressors of the cone cell to R7 neuron transformation caused by sev-svp. Suppression of the sev-svp phenotype can be achieved by decreasing the gene-dosage of any of the members of the ras-pathway. This suggests that the function of seven-up in the cone cells requires ras signaling. However, a decrease in ras signaling results in enhancement of the phenotype caused by the ro-svp transgene. We discuss the relationship between decisions controlled by seven-up and those controlled by ras signaling.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources