Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Jun;15(6):4687-92.
doi: 10.1523/JNEUROSCI.15-06-04687.1995.

Regulation of adult neurogenesis by excitatory input and NMDA receptor activation in the dentate gyrus

Affiliations

Regulation of adult neurogenesis by excitatory input and NMDA receptor activation in the dentate gyrus

H A Cameron et al. J Neurosci. 1995 Jun.

Abstract

The effects of afferent input and N-methyl-D-aspartate (NMDA) receptor activation on neurogenesis were examined in an intact system, the rat dentate gyrus, where neurons are naturally born in the adult. In the adult dentate gyrus, activation of NMDA receptors rapidly decreased the number of cells synthesizing DNA, whereas blockade of NMDA receptors rapidly increased the number of cells in the S phase identified with 3H-thymidine. Acute treatment with NMDA receptor antagonists increased the birth of neurons and increased the overall density of neurons in the granule cell layer. Lesion of the entorhinal cortex, the main excitatory afferent population to the granule neurons, also increased the birth of cells in the dentate gyrus. These results suggest that adult neurogenesis in the dentate gyrus of the rat is altered by afferent input, via NMDA receptors, and may be regulated naturally by endogenous excitatory amino acids.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources