Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Jun 7;87(11):817-27.
doi: 10.1093/jnci/87.11.817.

Lung cancer in radon-exposed miners and estimation of risk from indoor exposure

Affiliations

Lung cancer in radon-exposed miners and estimation of risk from indoor exposure

J H Lubin et al. J Natl Cancer Inst. .

Abstract

Background: Radioactive radon is an inert gas that can migrate from soils and rocks and accumulate in enclosed areas, such as homes and underground mines. Studies of miners show that exposure to radon decay products causes lung cancer. Consequently, it is of public health interest to estimate accurately the consequences of daily, low-level exposure in homes to this known carcinogen. Epidemiologic studies of residential radon exposure are burdened by an inability to estimate exposure accurately, low total exposure, and subsequent small excess risks. As a result, the studies have been inconclusive to date. Estimates of the hazard posed by residential radon have been based on analyses of data on miners, with recent estimates based on a pooling of four occupational cohort studies of miners, including 360 lung cancer deaths.

Purpose: To more fully describe the lung cancer risk in radon-exposed miners, we pooled original data from 11 studies of radon-exposed underground miners, conducted a comprehensive analysis, and developed models for estimating radon-associated lung cancer risk.

Methods: We pooled original data from 11 cohort studies of radon-exposed underground miners, including 65,000 men and more than 2700 lung cancer deaths, and fit various relative risk (RR) regression models.

Results: The RR relationship for cumulative radon progeny exposure was consistently linear in the range of miner exposures, suggesting that exposures at lower levels, such as in homes, would carry some risk. The exposure-response trend for never-smokers was threefold the trend for smokers, indicating a greater RR for exposure in never-smokers. The RR from exposure diminished with time since the exposure occurred. For equal total exposure, exposures of long duration (and low rate) were more harmful than exposures of short duration (and high rate).

Conclusions: In the miners, about 40% of all lung cancer deaths may be due to radon progeny exposure, 70% of lung cancer deaths in never-smokers, and 39% of lung cancer deaths in smokers. In the United States, 10% of all lung cancer deaths might be due to indoor radon exposure, 11% of lung cancer deaths in smokers, and 30% of lung cancer deaths in never-smokers. This risk model estimates that reducing radon in all homes exceeding the U. S. Environmental Protection Agency's recommended action level may reduce lung cancer deaths about 2%-4%. These estimates should be interpreted with caution, because concomitant exposures of miners to agents such as arsenic or diesel exhaust may modify the radon effect and, when considered together with other differences between homes and mines, might reduce the generalizability of findings in miners.

PubMed Disclaimer

Publication types