Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1995 Mar;30(3):221-6.
doi: 10.1007/BF02537824.

Cloning of the late genes in the ergosterol biosynthetic pathway of Saccharomyces cerevisiae--a review

Affiliations
Review

Cloning of the late genes in the ergosterol biosynthetic pathway of Saccharomyces cerevisiae--a review

N D Lees et al. Lipids. 1995 Mar.

Abstract

Research on the ergosterol biosynthetic pathway in fungi has focused on the identification of the specific sterol structure required for normal membrane structure and function and for completion of the cell cycle. The pathway and its end product are also the targets for a number of antifungal drugs. Identification of essential steps in ergo-sterol biosynthesis could provide new targets for the development of novel therapeutic agents. Nine of the eleven genes in the portion of the pathway committed exclusively to ergosterol biosynthesis have been cloned, and their essentiality for aerobic growth has been determined. The first three genes, ERG9 (squalene synthase), ERG1 (squalene epoxidase), and ERG7 (lanosterol synthase), have been cloned and found to be essential for aerobic viability since their absence would result in the cell being unable to synthesize a sterol molecule. The remaining eight genes encode enzymes which metabolize the first sterol, lanosterol, to ultimately form ergosterol. The two earliest genes, ERG11 (lanosterol demethylase) and ERG24 (C-14 reductase), have been cloned and found to be essential for aerobic growth but are suppressed by mutations in the C-5 desaturase (ERG3) gene and fen1 and fen2 mutations, respectively. The remaining cloned genes, ERG6 (C-24 methylase), ERG2 (D8AE7 isomerase), ERG3 (C-5 desaturase), and ERG4 (C-24(28) reductase), have been found to be nonessential. The remaining genes not yet cloned are the C-4 demethylase and the C-22 desaturase (ERG5).

PubMed Disclaimer

References

    1. Nature. 1990 Feb 1;343(6257):425-30 - PubMed
    1. Proc Natl Acad Sci U S A. 1994 Mar 15;91(6):2211-5 - PubMed
    1. Gene. 1994 Mar 11;140(1):41-9 - PubMed
    1. Biochim Biophys Acta. 1985 Dec 4;837(3):336-43 - PubMed
    1. J Med Vet Mycol. 1986 Aug;24(4):327-36 - PubMed

Publication types

MeSH terms

LinkOut - more resources