Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 May;36(5):956-64.
doi: 10.1227/00006123-199505000-00011.

An experimental technique to induce and quantify complex cyclic forces to the lumbar spine

Affiliations

An experimental technique to induce and quantify complex cyclic forces to the lumbar spine

N Yoganandan et al. Neurosurgery. 1995 May.

Abstract

The human spine is a complex, heterogeneous nonlinear and viscoelastic structure. In addition, in vivo loading is not uniaxial. Although many studies on the mechanical behavior of the spine under "pure" forces and single cycle load applications exist, little research is conducted with complex cyclic loads. In this study, we developed a technique to induce and quantify controlled complex physiological loads to the lumbar spinal column under cyclic (chronic) conditions. The methods described include specimen preparation and mounting to induce controlled complex loading (cyclic compression-flexion vector was chosen as an example), instrumentation, and biomechanical data to achieve the objectives. The results indicated that the specimen sustained the external load in a combined compression-flexion mechanism without considerable off-axis forces (lateral shears) and moments (lateral bending and torsion). By mounting the anchoring bolt in appropriate places (such as an anterolateral placement to induce compression-flexion-lateral bending), this technique can be used to apply and continuously quantify complex physiological acute or cyclic loads to describe the biomechanics of the spine. This procedure of inducing complex loads eliminates the difficulty in applying the principles of superposition, using the response from individual "pure" forces to account for the nonlinearity and viscoelasticity of the human lumbar spinal column.

PubMed Disclaimer

Publication types

LinkOut - more resources