Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1995 Jun 20;320(1):115-22.
doi: 10.1006/abbi.1995.1348.

Acid-base chemical mechanism of aspartase from Hafnia alvei

Affiliations
Comparative Study

Acid-base chemical mechanism of aspartase from Hafnia alvei

M Y Yoon et al. Arch Biochem Biophys. .

Abstract

An acid-base chemical mechanism is proposed for Hafnia alvei aspartase in which a proton is abstracted from C-3 of the monoanionic form of L-aspartate by an enzyme general base with a pK of 6.3-6.6 in the absence and presence of Mg2+. The resulting carbanion is presumably stabilized by delocalization of electrons into the beta-carboxyl with the assistance of a protonated enzyme group in the vicinity of the beta-carboxyl. Ammonia is then expelled with the assistance of a general acid group that traps an initially expelled NH3 as the final NH4+ product. In agreement with the function of the general acid group, potassium, an analog of NH4+, binds optimally when the group is unprotonated. The pK for the general acid is about 7 in the absence of Mg2+, but is increased by about a pH unit in the presence of Mg2+. Since the same pK values are observed in the pKi(succinate) and V/K pH profile, both enzyme groups must be in their optimum protonation state for efficient binding of reactant in the presence of Mg2+. At the end of a catalytic cycle, both the general base and general acid groups are in a protonation state opposite that in which they started when aspartate was bound. The presence of Mg2+ causes a pH-dependent activation of aspartase exhibited as a partial change in the V and V/Kasp pH profiles. When the aspartase reaction is run in D2O to greater than 50% completion no deuterium is found in the remaining aspartate, indicating that the site is inaccessible to solvent during the catalytic cycle.

PubMed Disclaimer

Publication types

LinkOut - more resources