Parameterized complexity analysis in computational biology
- PMID: 7796275
- DOI: 10.1093/bioinformatics/11.1.49
Parameterized complexity analysis in computational biology
Abstract
Many computational problems in biology involve parameters for which a small range of values cover important applications. We argue that for many problems in this setting, parameterized computational complexity rather than NP-completeness is the appropriate tool for studying apparent intractability. At issue in the theory of parameterized complexity is whether a problem can be solved in time O(n alpha) for each fixed parameter value, where alpha is a constant independent of the parameter. In addition to surveying this complexity framework, we describe a new result for the Longest Common Subsequence problem. In particular, we show that the problem is hard for W[t] for all t when parameterized by the number of strings and the size of the alphabet. Lower bounds on the complexity of this basic combinatorial problem imply lower bounds on more general sequence alignment and consensus discovery problems. We also describe a number of open problems pertaining to the parameterized complexity of problems in computational biology where small parameter values are important.
Similar articles
-
Fixed-parameter tractability of the maximum agreement supertree problem.IEEE/ACM Trans Comput Biol Bioinform. 2010 Apr-Jun;7(2):342-53. doi: 10.1109/TCBB.2008.93. IEEE/ACM Trans Comput Biol Bioinform. 2010. PMID: 20431153
-
Parameterized Algorithmics for Finding Exact Solutions of NP-Hard Biological Problems.Methods Mol Biol. 2017;1526:363-402. doi: 10.1007/978-1-4939-6613-4_20. Methods Mol Biol. 2017. PMID: 27896752
-
Exemplar longest common subsequence.IEEE/ACM Trans Comput Biol Bioinform. 2007 Oct-Dec;4(4):535-43. doi: 10.1109/TCBB.2007.1066. IEEE/ACM Trans Comput Biol Bioinform. 2007. PMID: 17975265
-
Energy-based RNA consensus secondary structure prediction in multiple sequence alignments.Methods Mol Biol. 2014;1097:125-41. doi: 10.1007/978-1-62703-709-9_7. Methods Mol Biol. 2014. PMID: 24639158 Review.
-
The emergence of pattern discovery techniques in computational biology.Metab Eng. 2000 Jul;2(3):159-77. doi: 10.1006/mben.2000.0151. Metab Eng. 2000. PMID: 11056059 Review.
Cited by
-
semQA: SPARQL with Idempotent Disjunction.IEEE Trans Knowl Data Eng. 2009 Mar 1;21(3):401-414. doi: 10.1109/TKDE.2008.91. IEEE Trans Knowl Data Eng. 2009. PMID: 19915690 Free PMC article.
-
Closest string with outliers.BMC Bioinformatics. 2011 Feb 15;12 Suppl 1(Suppl 1):S55. doi: 10.1186/1471-2105-12-S1-S55. BMC Bioinformatics. 2011. PMID: 21342588 Free PMC article.
-
Maximum common subgraph: some upper bound and lower bound results.BMC Bioinformatics. 2006 Dec 12;7 Suppl 4(Suppl 4):S6. doi: 10.1186/1471-2105-7-S4-S6. BMC Bioinformatics. 2006. PMID: 17217524 Free PMC article.
MeSH terms
Substances
LinkOut - more resources
Miscellaneous