Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Jul 1;55(13):2858-65.

Improved tumor radioimmunodetection using a single-chain Fv and gamma-interferon: potential clinical applications for radioimmunoguided surgery and gamma scanning

Affiliations
  • PMID: 7796413

Improved tumor radioimmunodetection using a single-chain Fv and gamma-interferon: potential clinical applications for radioimmunoguided surgery and gamma scanning

C A Nieroda et al. Cancer Res. .

Abstract

Previous studies have shown that (a) single-chain antibody binding proteins, or sFvs, localize experimental tumor xenografts (D.E. Milenic et al, Cancer Res., 51: 6363-6371, 1991) and (b) the administration of gamma-interferon (IFN-gamma) increases the expression of a high molecular weight glycoprotein, tumor-associated glycoprotein 72 (TAG-72), which improves mAb-based tumor targeting as well as radioimmunotherapy (J. W. Greiner et al., Cancer Res., 53: 600-608, 1993). The present experimental study was designed to determine whether exploiting those two observations in combination could augment tumor detection. Initial results revealed significant localization of a single-chain antibody binding protein of CC49 (i.e., CC49 sFv), a second generation anti-TAG-72 mAb, to human colon tumor xenografts (HT-29), which express low constitutive TAG-72 levels. IFN-gamma treatment of mice bearing HT-29 tumors significantly increased TAG-72 levels in the tumor xenografts. Increased TAG-72 expression was accompanied by a 2-4-fold augmentation of CC49 sFv localized to the HT-29 tumors, measured by direct quantitation of 125I-labeled CC49 sFv tumor deposition as well as tumor:normal tissue ratios. Enhanced CC49 sFv tumor localization improved HT-29 tumor visualization by external scintigraphy as well as when using a hand-held gamma-detecting probe to discriminate between normal (i.e., heart, hind leg) and tumor tissue. The gamma-detecting probe was the same as that used intraoperatively with 125I-labeled CC49 IgG to identify occult tumors in patients. The present experimental findings indicate that the efficiency by which 125I-labeled CC49 sFv localizes tumor in vivo can be enhanced with IFN-gamma. Results of the present study suggest that (a) the incorporation of an IFN-gamma treatment schema prior to radioimmunscintigraphy may increase the signal from the tumor site(s), thus providing a better discrimination between tumor and background, and (b) combining 125I-labeled CC49 sFv with IFN-gamma will not only reduce the time interval between antibody injection and surgery, but will also increase the efficiency of tumor localization using the intraoperative gamma-detecting probe.

PubMed Disclaimer

Similar articles

Cited by