Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 1994;15(5):447-63.
doi: 10.1002/bem.2250150508.

Dose response study of human exposure to 60 Hz electric and magnetic fields

Affiliations
Clinical Trial

Dose response study of human exposure to 60 Hz electric and magnetic fields

C Graham et al. Bioelectromagnetics. 1994.

Abstract

This human exposure study examined the relationship between field strength and biological response and tested whether the exposure levels at which the greatest effects occur differ for different endpoints. Three matched groups of 18 men each participated in two 6 h exposure test sessions. All subjects were sham exposed in one session. In the other session, each group of subjects was exposed at a different level of combined electric and magnetic field strength (low group:6 kV/m, 10 microT; medium group:9 kV/m, 20 microT; and high group: 12 kV/m, 30 microT). The study was performed double blind, with exposure order counterbalanced. Significant slowing of heart rate, as well as alternations in the latency and amplitude of event-related brain potential measures derived from the electro encephalogram (EEG), occurred in the group exposed to the 9 kV/m, 20 microT combined field (medium group). Exposure at the other field strength levels had no influence on cardiac measures and differential effects on EEG activity. Significant decrements in reaction time and in performance accuracy on a time estimation task were observed only in the low group. These results provide support for the hypothesis that humans may be more responsive to some combinations or levels of field strength than to others and that such differences in responsivity may depend, in part, on the endpoint of interest.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources