Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Dec 30;269(52):32916-23.

Gelsolin displaces phalloidin from actin filaments. A new fluorescence method shows that both Ca2+ and Mg2+ affect the rate at which gelsolin severs F-actin

Affiliations
  • PMID: 7806519
Free article

Gelsolin displaces phalloidin from actin filaments. A new fluorescence method shows that both Ca2+ and Mg2+ affect the rate at which gelsolin severs F-actin

P G Allen et al. J Biol Chem. .
Free article

Abstract

We describe an assay for measuring both the extent and kinetics of the severing of F-actin, based on the enhanced fluorescence emission of tetramethylrhodamine-phalloidin bound to F-actin. The enhanced fluorescence is lost after exposure to active gelsolin by displacement of the phalloidin from actin during severing. This assay requires small amounts of actin and gelsolin, can be used to measure reaction times ranging from 1 to 10(3) s, and does not require covalent modification of either protein. The rate of fluorescence loss is linearly related to the concentrations of both actin and gelsolin. However, the apparent rate constant of the reaction is highly dependent on the divalent cation concentration, varying between 10(4) and 10(6) M-1 s-1 when the [Ca2+] varies between 20 and 200 microM. Addition of Mg2+ increases the apparent rate constant at equivalent Ca2+ concentration. These results suggest that in vitro the rate-limiting step in the severing process is the activation of gelsolin by the binding of Ca2+ and Mg2+ to several low affinity (Kd approximately 100 microM) sites on gelsolin. While activation of gelsolin by Ca2+ is a slow process, the binding and severing of actin occurs at a rate approaching the diffusion limit.

PubMed Disclaimer

Publication types

LinkOut - more resources