Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Dec;46(6):1041-7.

Correlation of activation of Ca2+/calmodulin-dependent protein kinase II with catecholamine secretion and tyrosine hydroxylase activation in cultured bovine adrenal medullary cells

Affiliations
  • PMID: 7808423

Correlation of activation of Ca2+/calmodulin-dependent protein kinase II with catecholamine secretion and tyrosine hydroxylase activation in cultured bovine adrenal medullary cells

M Tsutsui et al. Mol Pharmacol. 1994 Dec.

Abstract

We have investigated the activation of Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) in cultured bovine adrenal medullary cells. The activation was assayed as an increase in the Ca(2+)-independent (autonomous) activity of CaM kinase II, using the synthetic substrate Syntide-2. Incubation of cells with acetylcholine increased the Ca(2+)-independent activity in a time (20 sec to 5.0 min)- and concentration (10-300 microM)-dependent manner. These curves were closely correlated with those of catecholamine secretion and tyrosine hydroxylase activation. Removal of extracellular Ca2+ completely abolished the stimulatory effects of acetylcholine on the Ca(2+)-independent activity, as well as on catecholamine secretion and activation of tyrosine hydroxylase. Nicotine but not muscarine increased the Ca(2+)-independent activity as potently as did acetylcholine, and hexamethonium but not atropine completely blocked the acetylcholine-induced increase. In 32P-labeled cells, acetylcholine stimulated the phosphorylation of a 50-kDa protein that was immunoprecipitated with an anti-brain CaM kinase II antibody. These results suggest that acetylcholine stimulates CaM kinase II activity through nicotinic acetylcholine receptor-mediated influx of Ca2+ and that the activation of CaM kinase II is closely related to catecholamine secretion and tyrosine hydroxylase activation in cultured adrenal medullary cells.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources