Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Dec;267(6 Pt 1):C1589-97.
doi: 10.1152/ajpcell.1994.267.6.C1589.

Aminopyridine inhibition and voltage dependence of K+ currents in smooth muscle cells from cerebral arteries

Affiliations

Aminopyridine inhibition and voltage dependence of K+ currents in smooth muscle cells from cerebral arteries

B E Robertson et al. Am J Physiol. 1994 Dec.

Abstract

Voltage-dependent K+ currents were characterized using the patch-clamp technique in smooth muscle cells isolated from rabbit cerebral (basilar) arteries. This study focused on the voltage dependence and the pharmacology of these K+ currents, since this information will be useful for the investigation of the role of the voltage-dependent K+ channels in arterial function. Currents through Ca(2+)-activated K+ (KCa) channels were minimized by buffering intracellular Ca2+ to low levels and by blockers (tetraethylammonium and iberiotoxin) of these channels. Membrane depolarization increased K+ currents, independent of changes in the driving force for K+ movement. With 140 mM internal and external K+, activation of K+ currents by membrane depolarization was half maximal at about -10 mV and increased as much as e-fold per 11 mV. Inactivation also depended on voltage, with a midpoint at -44 mV. 3,4-Diaminopyridine (3,4-DAP),4-aminopyridine(4-AP),3-amino-pyridine(3-AP), and 2-aminopyridine (2-AP) inhibited voltage-dependent K+ currents. At 0 mV, 3,4-DAP, 4-AP, 3-AP, and 2-AP (5 mM) inhibited the K+ currents by 84, 66, 36, and 8%, respectively. Phencyclidine (100 microM) inhibited the current by 53% at 0 mV. Steady-state whole cell currents through these channels were measured at physiological membrane potentials. At -40 mV, 4-AP (5 mM) reduced the steady-state outward current by 2.5 pA. These results are consistent with the idea that voltage-dependent K+ channels are involved in the regulation of the membrane potential of arterial smooth muscle.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources