Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Dec;267(6 Pt 2):F1059-62.
doi: 10.1152/ajprenal.1994.267.6.F1059.

Determinants of intrarenal oxygenation. I. Effects of diuretics

Affiliations

Determinants of intrarenal oxygenation. I. Effects of diuretics

M Brezis et al. Am J Physiol. 1994 Dec.

Abstract

To study renal cortical and medullary oxygen tensions, we used sensitive Clark-type O2 microelectrodes, inserted by micromanipulators into the cortex and medulla of kidneys of anesthetized rats. As previously reported, under basal conditions, medullary PO2 was significantly lower than cortical PO2. Furosemide, which inhibits reabsorptive transport in the medullary thick ascending limb, increased medullary PO2 from 16 +/- 4 to 35 +/- 4 mmHg (P < 0.0005) without altering cortical PO2. This effect, reproduced by ethacrynic acid and bumetanide, was selective for loop diuretics and was directly due to decreased tubular O2 consumption, since medullary blood flow was remarkably reduced by furosemide (-28 +/- 6% from baseline, P < 0.0001, as measured by a laser-Doppler probe). By contrast, acetazolamide, which decreases proximal tubule metabolism, selectively increased cortical PO2. These data are, in general, consistent with tubular metabolism as a major determinant of intrarenal oxygenation and suggest, in particular, that medullary reabsorptive work is at least in part responsible for renal medullary hypoxia.

PubMed Disclaimer

Publication types

LinkOut - more resources