Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Sep;240(1):125-30.
doi: 10.1002/ar.1092400113.

Expression of epidermal growth factor receptor (EGFr) immunoreactivity in human cutaneous nerves and sensory corpuscles

Affiliations

Expression of epidermal growth factor receptor (EGFr) immunoreactivity in human cutaneous nerves and sensory corpuscles

J A Vega et al. Anat Rec. 1994 Sep.

Abstract

Background: The epidermal growth factor receptor (EGFr) binds both epidermal growth factor (EGF) and transforming growth factor alpha (TGF alpha), which are currently considered among putative growth factors playing a role in the nervous system. EGFr and their ligands have been localized in the mammalian peripheral nervous system. The present study was undertaken to investigate whether nerves and sensory corpuscles supplying human glabrous skin express EGFr.

Methods: Formaldehyde fixed, paraffin embedded samples of finger-tip digital skin obtained from adult healthy subjects were processed for indirect PAP immunohistochemistry using a monoclonal antibody against an epitope of the intracellular domain of EGFr. To ascertain the localization of EGFr immunoreactivity, neurofilament proteins (NFP), S100 protein (S100P), and epithelial membrane antigen (EMA) were studied in parallel to label axons, Schwann cells, and perineurial cells, respectively, as well as their corpuscular derivatives.

Results: A variable intensity of EGFr immunostaining was regularly observed in the perineurium and Schwann cells, and occasionally in the axons of nerve bundles. EGFr immunoreactivity was also present in the axon and lamellar cells of Meissner corpuscles, and within the axon, inner-core, outer-core, and capsule of Pacinian corpuscles.

Conclusions: Present results demonstrate that human cutaneous nerves and sensory corpuscles express EGFr suggesting a role for peptides able to bind EGFr, i.e., EGF and TGF alpha, in the human peripheral nervous sensory system.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources