Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Dec 15;226(3):811-8.
doi: 10.1111/j.1432-1033.1994.t01-1-00811.x.

Thermodynamics of the formylmethanofuran dehydrogenase reaction in Methanobacterium thermoautotrophicum

Affiliations
Free article

Thermodynamics of the formylmethanofuran dehydrogenase reaction in Methanobacterium thermoautotrophicum

P A Bertram et al. Eur J Biochem. .
Free article

Abstract

Purified formylmethanofuran dehydrogenase from Methanobacterium thermoautotrophicum, which is a thermophilic methanogenic Archaeon growing on H2 and CO2, was shown to catalyze the reversible reduction of CO2 to N-formylmethanofuran with 1,1',2,2'-tetramethylviologen (E'0 = -550 mV) as electron donor. The rate of CO2 reduction was approximately 25 times higher than the rate of N-formylmethanofuran dehydrogenation. From determinations of equilibrium concentrations at 60 degrees C and pH 7.0 a midpoint potential (E'0) for the CO2 + methanofuran/formylmethanofuran couple of approximately -530 mV was estimated. The initial step of methanogenesis from CO2 thus has a midpoint potential considerably more negative than that of the H+/H2 couple (E'0 = -460 mV at 60 degrees C). Evidence is described indicating that the as-yet unidentified physiological electron donor of the formylmethanofuran dehydrogenase is present in the soluble cell fraction.

PubMed Disclaimer

Publication types

LinkOut - more resources