Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Aug;46(8):676-9.
doi: 10.1111/j.2042-7158.1994.tb03881.x.

The stimulative effect of diffusion potential on enoxacin uptake across rat intestinal brush-border membranes

Affiliations

The stimulative effect of diffusion potential on enoxacin uptake across rat intestinal brush-border membranes

T Hirano et al. J Pharm Pharmacol. 1994 Aug.

Abstract

Evidence of a membrane potential dependence for enoxacin uptake by rat intestinal brush-border membrane vesicles has been found. The transient overshooting uptake of enoxacin disappeared in the voltage-clamped brush-border membrane vesicles in the presence of an outward H(+)-gradient. Momentary dissipation of the H(+)-gradient itself by carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone (FCCP) did not affect the uptake of enoxacin. In contrast, enoxacin uptake was depressed by an interior positive K(+)-diffusion potential induced by valinomycin. Furthermore, not only the outward H(+)-gradient but also an inward Cl(-)-gradient caused a stimulating effect on enoxacin uptake, and the stimulation by the Cl(-)-gradient was dissipated by using voltage-clamped membrane vesicles. These results indicate that enoxacin transportation across the brush-border membrane is dependent on the ionic diffusion potential. On the other hand, neither Gly-Gly nor guanidine had any effect on enoxacin uptake by the membrane vesicles in the presence of an inward (for Gly-Gly) or outward (for guanidine) H(+)-gradient as a driving force for each transport system. Therefore, it seems that enoxacin transport through the intestinal epithelia does not participate in the carrier-mediated transport systems for Gly-Gly and guanidine.

PubMed Disclaimer

MeSH terms

LinkOut - more resources