Analysis of chemical signals by nervous systems
- PMID: 7816849
- PMCID: PMC42818
- DOI: 10.1073/pnas.92.1.67
Analysis of chemical signals by nervous systems
Abstract
Intraspecific and interspecific communication and recognition depend on olfaction in widely diverse species of animals. Olfaction, an ancient sensory modality, is based on principles of neural organization and function that appear to be remarkably similar throughout the zoosphere. Thus, the "primitives" of olfactory stimuli that determine the input information of olfaction, the kinds of "molecular images" formed at various levels in the olfactory pathway, and the cellular mechanisms that underlie olfactory information processing are comparable in invertebrates and vertebrates alike. A case in point is the male-specific olfactory subsystem in moths, which is specialized to detect and analyze the qualitative, quantitative, and temporal features of the con-specific females' sex-pheromonal chemical signal. This olfactory subsystem can be viewed, and is here presented, as a model in which common principles of organization and function of olfactory systems in general are exaggerated to serve the requirements of a chemical communication system that is crucial for reproductive success.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
