Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Oct 3;659(1-2):147-56.
doi: 10.1016/0006-8993(94)90874-5.

The ontogeny of [3H]gamma-hydroxybutyrate and [3H]GABAB binding sites: relation to the development of experimental absence seizures

Affiliations

The ontogeny of [3H]gamma-hydroxybutyrate and [3H]GABAB binding sites: relation to the development of experimental absence seizures

O C Snead 3rd. Brain Res. .

Abstract

gamma-Hydroxybutyric acid (GHB) is a naturally occurring compound which has the ability to induce generalized absence seizures when given to animals. There is growing evidence that both gamma-aminobutyric acid (GABA)B- and GHB-mediated mechanisms are involved in the pathogenesis of this phenomenon. Because of the fact that absence seizures are a disorder of children the ontogeny of [3H]GHB and [3H]GABAB binding and the developmental appearance of absence seizures in the GHB model of absence was ascertained and compared in developing rats. [3H]GABAB binding was present within the first 3 days of postnatal life and rose to levels which exceeded those found in adults, peaking between the 3rd and 5th postnatal week. [3H]GHB binding on the other hand did not appear until postnatal day 17 when it was detectable in the CA1 region of the hippocampus. There was a steady increase in [3H]GHB binding until adult levels were reached by postnatal day 40. Comparison of [3H]GABAB and [3H]GHB binding revealed that both sites were common to layer I-III of cortex, but otherwise differed in their regional distribution. There was an absolute concordance of the ontogeny of GHB-induced absence seizures with the developmental appearance of [3H]GHB binding in the superficial laminae of cortex; both appeared at postnatal day 18. These data support the hypotheses that the [3H]GHB and [3H]GABAB binding sites are separate from one another and suggest that maturational events in thalamus and cortex in the 3rd postnatal week are involved in the expression of GHB-induced absence seizures.

PubMed Disclaimer

Publication types

LinkOut - more resources