Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Dec;120(12):3667-79.
doi: 10.1242/dev.120.12.3667.

Beta-catenin localization during Xenopus embryogenesis: accumulation at tissue and somite boundaries

Affiliations

Beta-catenin localization during Xenopus embryogenesis: accumulation at tissue and somite boundaries

F Fagotto et al. Development. 1994 Dec.

Abstract

beta-catenin is a cytoplasmic protein associated with cadherin adhesion molecules and has been implicated in axis formation in Xenopus (McCrea, P. D., Brieher, W. M. and Gumbiner, B. M. (1993) J. Cell Biol. 127, 477-484). We have studied its distribution in Xenopus embryos by immunofluorescence on frozen sections. Consistent with its function in cell-cell adhesion, beta-catenin is present in every cell. However, high levels are expressed in certain regions and different tissues of the embryo. No simple correlation appears to exist between the levels of beta-catenin with the expected strength of adhesion. High levels of beta-catenin were found in regions undergoing active morphogenetic movements, such as the marginal zone of blastulae and gastrulae. This suggests that high expression of beta-catenin could be involved in dynamic adhesion events. Surprisingly, beta-catenin also accumulates on plasma membranes that probably do not establish direct or strong contacts with other cells. In particular, high amounts of beta-catenin are found transiently at boundaries between tissue anlagen and at the intersomitic boundaries. This unexpected pattern of beta-catenin expression raises the possibility that this molecule participates in developmental processes, perhaps independently of its classical role in cell-cell adhesion.

PubMed Disclaimer

Publication types

LinkOut - more resources