Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1994 Aug;116(2):285-90.
doi: 10.1093/oxfordjournals.jbchem.a124521.

The NhaB Na+/H+ antiporter is essential for intracellular pH regulation under alkaline conditions in Escherichia coli

Affiliations
Free article
Comparative Study

The NhaB Na+/H+ antiporter is essential for intracellular pH regulation under alkaline conditions in Escherichia coli

T Shimamoto et al. J Biochem. 1994 Aug.
Free article

Abstract

We isolated a mutant of Escherichia coli which was defective in an Na+/H+ antiporter and grew poorly under alkaline conditions [Ishikawa, T., Hama, H., Tsuda, T., and Tsuchiya, T. (1987) J. Biol. Chem. 262, 7443-7446]. Later, it was concluded that the defective Na+/H+ antiporter in the mutant was the NhaB system, and the nhaB gene was mapped to 25.6 min on the E. coli chromosome [Thelen, P., Tsuchiya, T., and Goldberg, E.B. (1991) J. Bacteriol. 173, 6553-6557]. We found that the NhaB-defective cells cannot grow in a high pH medium. Furthermore, intracellular pH in the mutant cells was almost the same as extracellular pH between 7.9 and 9.1, that is, intracellular pH was not regulated at this pH range. On the other hand, intracellular pH of the wild-type cells was maintained at about 7.6 when the extracellular pH was between 7.6 and 8.5. Thus, the NhaB Na+/H+ antiporter is essential for the regulation of intracellular pH under alkaline conditions in E. coli. Introduction of nhaA gene into the mutant cells increased Na+/H+ antiporter activity, but did not restore the defective growth and defective intracellular pH regulation under alkaline conditions.

PubMed Disclaimer

Publication types

MeSH terms

Substances