Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Jan 13;270(2):530-5.
doi: 10.1074/jbc.270.2.530.

Evidence for intermediate channeling in mitochondrial beta-oxidation

Affiliations
Free article

Evidence for intermediate channeling in mitochondrial beta-oxidation

M A Nada et al. J Biol Chem. .
Free article

Abstract

The accumulation of beta-oxidation intermediates was studied by incubating normal and beta-oxidation enzyme-deficient human fibroblasts with [2H4]linoleate and L-carnitine and analyzing the resultant acylcarnitines by tandem mass spectrometry. Labeled decenoyl-, octanoyl-, hexanoyl-, and butyrylcarnitines were the only intermediates observed with normal cells. Intermediates of longer chain length, corresponding to substrates for the beta-oxidation enzymes associated with the inner mitochondrial membrane, were not observed unless a cell line was deficient in one of these enzymes, such as very-long-chain acyl-CoA dehydrogenase, long-chain 3-hydroxyacyl-CoA dehydrogenase, or electron transfer flavoprotein dehydrogenase. Matrix enzyme deficiencies, such as medium- and short-chain acyl-CoA dehydrogenases, were characterized by elevated concentrations of intermediates corresponding to their respective substrates (octanoyl- and decenoylcarnitines in medium-chain acyl-CoA dehydrogenase deficiency and butyrylcarnitine in short-chain acyl-CoA dehydrogenase deficiency). These observations agree with the notion of intermediate channeling due to the organization of beta-oxidation enzymes in complexes. The only exception is the incomplete channeling from thiolase to acyl-CoA dehydrogenase in the matrix. This situation may be a consequence of only one 3-ketoacyl-CoA thiolase being unable to interact with the several acyl-CoA dehydrogenases in the matrix.

PubMed Disclaimer

Publication types

LinkOut - more resources