Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Jan;15(1 Pt 1):449-57.
doi: 10.1523/JNEUROSCI.15-01-00449.1995.

Inhibition of voltage-gated K+ channel gene expression by the neuropeptide thyrotropin-releasing hormone

Affiliations

Inhibition of voltage-gated K+ channel gene expression by the neuropeptide thyrotropin-releasing hormone

K Takimoto et al. J Neurosci. 1995 Jan.

Abstract

Many neurotransmitters regulate action potential activity in neuronal, endocrine, and cardiac cells by rapidly modulating the gating of K+ channels. Neurotransmitters might also produce prolonged effects on excitability by regulating the expression of K+ channel genes. Here we show that the neuropeptide thyrotropin-releasing hormone (TRH) down-regulates Kv1.5 and Kv2.1 K+ channel mRNAs in clonal pituitary cells. The effect on Kv1.5 mRNA expression does not require protein synthesis and is due to decreased transcription. Immunoblots demonstrate that Kv1.5 and Kv2.1 immunoreactivities are significantly reduced by TRH within 12 hr. The change in channel protein expression is associated with a decrease in voltage-gated K+ currents. Thus, TRH enhances excitability by inhibiting K+ channel gene expression. Neuropeptide regulation of K+ channel gene expression may produce long-term changes in neuronal action potential activity and synaptic transmission.

PubMed Disclaimer

Publication types

MeSH terms