Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Dec;109(4):949-56.
doi: 10.1016/0300-9629(94)90243-7.

Potassium activation of Na(+)-dependent leucine transport in brush-border membrane vesicles from rat jejunum

Affiliations

Potassium activation of Na(+)-dependent leucine transport in brush-border membrane vesicles from rat jejunum

V F Sacchi et al. Comp Biochem Physiol A Physiol. 1994 Dec.

Abstract

Na(+)-dependent leucine uptake was greater in potassium loaded brush-border membrane vesicles compared with controls. This effect was not mediated by an electrical potential difference, since it was still present in voltage-clamped conditions. Inhibition experiments indicate the same Na(+)-dependent leucine transport activity in the presence or in the absence of potassium. The affinity of sodium for the cotransporter was identical at 10 or 100 mM potassium. Leucine kinetics at different potassium concentrations showed a maximum 2.4-fold increase in Vmax, while Km was unaffected. The secondary plots of the kinetic results were not linear. This kinetic behavior suggests that K+ acts as a non-essential activator of Na(+)-dependent leucine cotransport. A charge compensation of sodium-leucine influx is most probably a component of the potassium effect in the presence of valinomycin.

PubMed Disclaimer

LinkOut - more resources