Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1994 Sep;34(3):313-9.
doi: 10.1093/jac/34.3.313.

Molecular genetics of drug resistance in Mycobacterium tuberculosis

Affiliations
Review

Molecular genetics of drug resistance in Mycobacterium tuberculosis

Y Zhang et al. J Antimicrob Chemother. 1994 Sep.

Abstract

Tuberculosis (TB) is the single largest killer among infectious diseases. The recent resurgence of TB together with outbreaks of multidrug resistant tuberculosis has focused attention on understanding the mechanisms of such drug resistance. Because of the relative neglect of TB research in the past and late arrival of mycobacterial genetic tools, the molecular mechanisms of drug resistance in TB remained largely unknown until very recently. In this paper we review recent progress on the mechanisms of resistance to three major anti-TB drugs; isoniazid, rifampicin and streptomycin. While the resistance mechanisms for rifampicin and streptomycin are similar to those found in other bacteria, isoniazid susceptibility and resistance is unique to Mycobacterium tuberculosis. So far, mutations in two chromosomal loci, katG and inhA have been found to be involved in isoniazid resistance in TB. Identification and characterization of mutations responsible for resistance opens up new possibilities for rapid detection of drug resistant strains. Molecular understanding of drug resistance and drug action in M. tuberculosis may eventually lead to rational design of new anti-TB drugs.

PubMed Disclaimer

MeSH terms

LinkOut - more resources