Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1995 Jan 27;270(4):1529-34.
doi: 10.1074/jbc.270.4.1529.

Cloning, purification, and properties of a novel NADH pyrophosphatase. Evidence for a nucleotide pyrophosphatase catalytic domain in MutT-like enzymes

Affiliations
Free article
Comparative Study

Cloning, purification, and properties of a novel NADH pyrophosphatase. Evidence for a nucleotide pyrophosphatase catalytic domain in MutT-like enzymes

D N Frick et al. J Biol Chem. .
Free article

Abstract

An Escherichia coli open reading frame containing significant homology to the active site of the MutT enzyme codes for a novel dinucleotide pyrophosphatase. The motif shared by these two proteins and several others is conserved throughout nature and may designate a nucleotide-binding or pyrophosphatase domain. The E. coli NADH pyrophosphatase has been cloned, overexpressed, and purified to near homogeneity. The protein contains 257 amino acids (M(r) = 29,774) and migrates on gel filtration columns as an apparent dimer. The enzyme catalyzes the hydrolysis of a broad range of dinucleotide pyrophosphates, but uniquely prefers the reduced form of NADH. The Vmax/Km for NADH (69 mumol min-1 mg-1 mM-1) is an order of magnitude higher than for any other dinucleotide pyrophosphate tested. In addition, the Km for NADH (0.1 mM) is 50-fold lower than the Km for NAD+. The hydrolysis of dinucleotide pyrophosphates requires divalent metal ions and yields two mononucleoside 5'-phosphates. The metals that most efficiently stimulate activity are Mg2+ and Mn2+. Although these metals support similar Vmax values at optimal metal concentration, the apparent Km for Mg2+ is 3.7 mM (at 1 mM NADH), whereas the apparent Km for Mn2+ at the same NADH concentration is 30 microM.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources