Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Jan 27;270(4):1747-53.

A COL2A1 mutation in achondrogenesis type II results in the replacement of type II collagen by type I and III collagens in cartilage

Affiliations
  • PMID: 7829510
Free article

A COL2A1 mutation in achondrogenesis type II results in the replacement of type II collagen by type I and III collagens in cartilage

D Chan et al. J Biol Chem. .
Free article

Abstract

An autosomal dominant mutation in the COL2A1 gene was identified in a fetus with achondrogenesis type II. A transition of G2853 to A in exon 41 produced a substitution of Gly769 by Ser within the triple helical domain of the alpha 1(II) chain of type II collagen, interrupting the mandatory Gly-X-Y triplet sequence required for the normal formation of stable triple helical type II collagen molecules, resulting in the complete absence of type II collagen in the cartilage, which had a gelatinous composition. Type I and III collagens were the major species found in cartilage tissue and synthesized by cultured chondrocytes along with cartilage type XI collagen. However, cultured chondrocytes produced a trace amount of type II collagen, which was retained within the cells and not secreted. In situ hybridization of cartilage sections showed that the chondrocytes produced both type II and type I collagen mRNA. As a result, it is likely that the chondrocytes produced type II collagen molecules, which were then degraded. The close proximity of the Gly769 substitution by Ser to the mammalian collagenase cleavage site at Gly775-Leu776 may have produced an unstable domain that was highly susceptible to proteolysis. The type I and III collagens that replaced type II collagen were unable to maintain the normal structure of the hyaline cartilage but did support chondrocyte maturation, evidenced by the expression of type X collagen in the hypertrophic zone of the growth plate cartilage.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources