Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Sep 26;658(1-2):199-208.
doi: 10.1016/s0006-8993(09)90027-0.

Marked regional disturbances in brain metabolism of monoaminergic neurotransmitters in the genetically dystonic hamster

Affiliations

Marked regional disturbances in brain metabolism of monoaminergic neurotransmitters in the genetically dystonic hamster

W Löscher et al. Brain Res. .

Abstract

The genetically dystonic hamster is an animal model of idiopathic (torsion) dystonia that displays sustained abnormal movements and postures either spontaneously or in response to mild environmental stimuli. Since dystonic attacks occur in the absence of any lesion which can be defined by standard histopathological techniques in the central nervous system, the presumption is that dystonia in mutant hamsters is due to some biochemical disturbance activity in brain regions involved in motor functions. In the present study we determined the monoamine neurotransmitters dopamine, noradrenaline, adrenaline and serotonin (5-HT) as well as the dopamine metabolites homovanillic acid (HVA) and dihydroxyphenylacetic acid (DOPAC) and the 5-HT metabolite 5-hydroxyindoleacetic acid (5-HIAA) in 14 brain regions of male and female dystonic hamsters and age-matched non-dystonic controls. All determinations were done at age of maximum susceptibility for induction of dystonic attacks. Since both genders of dystonic hamsters exhibit the same characteristic age-dependent time-course of dystonia, it was assumed that only those biochemical alterations are critically involved in dystonia that occur in both female and male animals. The neurochemical data show that except for a significant decrease of dopamine and HVA in the olfactory bulb, no consistent changes in dopamine metabolism are present across brain regions, including the basal ganglia, of dystonic hamsters. In contrast, marked increases in noradrenaline and 5-HT or 5-HIAA were found in several brain areas of both genders, indicating an enhanced activity of central noradrenergic and serotonergic nuclei in the brainstem. The present results suggest the involvement of noradrenergic and serotonergic neural systems in the pathophysiology of dystonia. Based on these data and recent theoretical suggestions from clinical findings, drugs which reduce noradrenergic and serotonergic neurotransmission may be a useful therapeutic approach to dystonia.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources