Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Sep;77(3):1393-8.
doi: 10.1152/jappl.1994.77.3.1393.

Abdominal muscle activity during hypercapnia in awake dogs

Affiliations

Abdominal muscle activity during hypercapnia in awake dogs

A M Leevers et al. J Appl Physiol (1985). 1994 Sep.

Abstract

We previously found the internal abdominal muscle layer to be preferentially recruited during expiratory threshold loading in anesthetized and awake dogs. Expiratory threshold loading increases end-expiratory lung volume and hence can activate reflex pathways such as tonic vagal reflexes, which could influence abdominal muscle recruitment. Our objectives in the present study were to determine the effects of hypercapnia on abdominal muscle activation and the pattern of recruitment in awake dogs. Five tracheotomized dogs were chronically implanted with sonomicrometer transducers and fine-wire electromyogram (EMG) electrodes in each of the four abdominal muscles: transversus abdominis, internal oblique, external oblique, and rectus abdominis. Muscle length changes and EMG activity were studied in the awake dog at rest and during CO2 rebreathing. CO2 rebreathing produced a tripling of tidal volume and activation of the abdominal muscles. Despite the increase in tidal volume, there was no significant change in abdominal muscle end-inspiratory length. Both tonic and phasic expiratory shortening were greater in the internal muscle layer (transversus abdominis and internal oblique) than in the external muscle layer (external oblique and rectus abdominis). We conclude that the internal abdominal muscles are preferentially recruited by hypercapnia and vagal reflexes probably do not contribute to this differential recruitment but that segmental reflexes may be involved. The mechanical consequences of this recruitment are discussed.

PubMed Disclaimer

Similar articles

Publication types

LinkOut - more resources