Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Oct;16(5):375-9.

Measuring fractal dimensions. Sensitivity to edge-processing functions

Affiliations
  • PMID: 7840842

Measuring fractal dimensions. Sensitivity to edge-processing functions

S S Cross et al. Anal Quant Cytol Histol. 1994 Oct.

Abstract

The fractal dimension is a useful tool in quantitative histology and cytology, and its measurement is easily implemented on computerized image analysis systems. However, the optimal conditions for capture of images and the effect of image-processing functions on the measurement of the fractal dimension have not been reported. Edge-processing functions were applied to images of Euclidean (square) and fractal (Koch island, renal angiogram) objects. The fractal dimension of processed images was measured using implementation of the box-counting method, and the area of thresholded image was also recorded. The method was shown to be accurate, with errors of < 1.5% for objects with known fractal dimensions, and highly reproducible, with a reliability coefficient of 0.972 (95% confidence limits of 0.868-0.987). The fractal dimension of the fractal images showed a marked (> 15%) reduction when a binary noise reduction function was applied with the minimum neighbors limit set above 3. In contrast, the fractal dimension of the Euclidean square was unchanged by this function. The reduction in fractal dimension was due to the erosion of complex convolutions at the edge of the fractal objects. Edge-processing functions should be avoided when manipulating images of fractal objects.

PubMed Disclaimer