Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1994 Nov 1;29(4):279-89.
doi: 10.1002/jemt.1070290404.

Confocal imaging of dendritic Ca2+ transients in hippocampal brain slices during simultaneous current- and voltage-clamp recording

Affiliations
Comparative Study

Confocal imaging of dendritic Ca2+ transients in hippocampal brain slices during simultaneous current- and voltage-clamp recording

D B Jaffe et al. Microsc Res Tech. .

Abstract

Changes in the intracellular Ca2+ concentration ([Ca2+]i) within CA1 hippocampal pyramidal neurons were imaged using confocal laser scanning microscopy in conjunction with Ca(2+)-sensitive fluorescent indicators. The imaging was performed in thick hippocampal brain slices while simultaneously measuring or controlling electrical activity with sharp microelectrodes or whole-cell patch-clamp electrodes. The combination of imaging and electrophysiology was essential for interpreting the changes in [Ca2+]i. We compared the increases in [Ca2+]i produced by either of two methods--direct depolarization of the cell via the somatic electrode or high-frequency stimulations of synaptic inputs. The increases in [Ca2+]i in the soma and proximal dendrites caused by both methods were of comparable magnitude and they always decayed within seconds in healthy cells. However, the spatial patterns of distal Ca2+ increases were different. Separate sets of synaptic inputs to the same cell resulted in different spatial patterns of [Ca2+]i transients. We isolated and observed what appeared to be a voltage-independent component of the synaptically mediated [Ca2+]i transients. This work demonstrates that the combination of neurophysiology and simultaneous confocal microscopy is well suited for visualizing and analyzing [Ca2+]i changes within highly localized regions of neurons in thick brain slices. The approach should allow further analysis of the relative contribution of voltage- and agonist-dependent influences on [Ca2+]i within neurons throughout the CNS and it raises the possibility of routinely relating subcellular [Ca2+]i changes to structural and functional modifications.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources