Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1994 Aug;7(5):231-6.
doi: 10.1002/nbm.1940070506.

Decrease in brain choline-containing compounds following a short period of global ischemia in gerbils as detected by 1H NMR spectroscopy in vivo

Affiliations
Comparative Study

Decrease in brain choline-containing compounds following a short period of global ischemia in gerbils as detected by 1H NMR spectroscopy in vivo

J Kuhmonen et al. NMR Biomed. 1994 Aug.

Abstract

Cerebral metabolism was studied in the postischaemic gerbil brain using surface coil 31P and 1H NMR spectroscopy. The ratio of choline-containing compounds (Cho) to total creatine (Cr) in the brain decreased from 0.46 +/- 0.02 to 0.32 +/- 0.02 by the fifth day following exposure to 5 min of global ischaemia and it remained at this low level for at least 19 days. The amounts of cerebral Cho as quantified by 1H NMR in vivo were 1.70 +/- 0.15 and 1.09 +/- 0.22 mmol/kg in control and postischaemic animals, respectively. The T2 of Cho was longer in the postischaemic cerebral cortex than in the control one. N-acetyl aspartate (NAA) as determined by 1H NMR in vivo did not differ in the two animal groups. High-resolution 1H NMR of acid-extracted brain cortices showed a decrease in total Cho (glycerophosphocholine, phosphocholine and choline) by 31%, but no changes in NAA, total creatine, taurine and myo-inositol, in the brain cortex seven days postischaemia relative to control animals. The decrease in acid extractable Cho was mainly due to the drop in glycerophosphocholine concentration. 31P NMR indicated normal energy state and phosphomonoester/phosphocreatine (PCr) and phosphodiester/PCr ratios in the in vivo brain 7 days postischaemia. Silver impregnation did not reveal neuronal degeneration but immunohistochemical staining showed a number of glial fibrillary acidic protein expressing astrocytes as indicators of reactive gliosis in the postischaemic cerebral cortex. These data show, for the first time, that a 1H NMR decrease in Cho metabolites takes place as a consequence of brief ischaemic episode even in the absence of obvious neuronal degeneration.

PubMed Disclaimer

Similar articles

Publication types

LinkOut - more resources