Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Jan 15;227(1-2):226-40.
doi: 10.1111/j.1432-1033.1995.tb20380.x.

Copper binding to rabbit liver metallothionein. Formation of a continuum of copper(I)-thiolate stoichiometric species

Affiliations
Free article

Copper binding to rabbit liver metallothionein. Formation of a continuum of copper(I)-thiolate stoichiometric species

A Presta et al. Eur J Biochem. .
Free article

Abstract

Circular dichroism and ultraviolet absorption spectral data have been used to probe the binding mechanism for formation and the structure of the copper(I)-thiolate binding clusters in rabbit liver metallothionein during addition of Cu+ to aqueous solutions of Zn7-metallothionein 2 and Cd5Zn2-metallothionein 2. Mammalian metallothionein binds metals in two binding sites, namely the alpha and beta domains. Spectral data which probe the distribution of Cu(I) between the two binding domains clearly show that both the site of binding (alpha or beta), and the structures of the specific metal-thiolate clusters formed, are dependent on temperature and on the nature of the starting protein (either Zn7-metallothionein or Cd5Zn2-metallothionein). CD spectra acquired during the addition of Cu+ to Zn7-metallothionein show that Cu+ replace the bound Zn(II) in a domain-distributed manner with complete removal of the Zn(II) after addition of 12 Cu+. Spectral and metal analyses prove that a series of Cu(I)-metallothionein species are formed by a non-cooperative metal-binding mechanism with a continuum of Cu(I):metallothionein stoichiometries. Observation of a series of spectral saturation points signal the formation of distinct optically active Cu(I)-thiolate structures for the Cu9Zn2-metallothionein, Cu12-metallothionein, and the Cu15-metallothionein species. These data very clearly show that for Cu(I) binding to Zn7-metallothionein, there are several key Cu(I):metallothionein stoichiometric ratios, and not just the single value of 12. The CD spectra up to the Cu12-metallothionein species are defined by bands located at 255(+) nm and 280(-) nm. Interpretation of the changes in the CD and ultraviolet absorption spectral data recorded between 3 degrees C and 52 degrees C as Cu+ is added to Zn-metallothionein show that copper-thiolate cluster formation is strongly temperature dependent. These changes in spectral properties are interpreted in terms of kinetic versus thermodynamic control of the metal-binding pathways as Cu+ binds to the protein. At low temperatures (3 degrees C and 10 degrees C) the spectral data indicate a kinetically controlled mechanism whereby an activation barrier inhibits formation of ordered copper-thiolate structures until formation of Cu12-metallothionein. At higher temperatures (> 30 degrees C) the activation barrier is overcome, allowing formation of new Cu(I)-thiolate clusters with unique spectral properties, especially at the Cu9Zn2-metallothionein point. The CD spectra also show that a Cu15-metallothionein species with a well-defined, three-dimensional structure forms at all temperatures, characterized by a band near 335 nm, indicating the presence of diagonal Cu(I).(ABSTRACT TRUNCATED AT 250 WORDS)

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources