Differential transcriptional activation in vitro by NF-kappa B/Rel proteins
- PMID: 7852394
- DOI: 10.1074/jbc.270.7.3123
Differential transcriptional activation in vitro by NF-kappa B/Rel proteins
Abstract
Distinct NF-kappa B subunit combinations contribute to the specificity of NF-kappa B-mediated transcriptional activation and to the induction of multiple cytokine genes including interferon-beta (IFN-beta). To evaluate the regulatory influence of different homo- and heterodimers, NF-kappa B subunits were analyzed for transcriptional activity in vitro using test templates containing two types of NF-kappa B recognition elements (the human immunodeficiency virus type 1 enhancer and the IFN-beta-positive regulatory domain-II (PRDII) as well as IFN-beta PRDIII-PRDI-PRDII linked to the -56 minimal promoter of rabbit beta-globin. Recombinant NF-kappa B subunits (p50, p65, c-Rel, p52, and I kappa B alpha) and interferon regulatory factor 1 were produced from either Escherichia coli or baculovirus expression systems. Transcriptional analysis in vitro demonstrated that 1) various dimeric complexes of NF-kappa B differentially stimulated transcription through the human immunodeficiency virus enhancer or PRDII up to 20-fold; 2) recombinant I kappa B alpha specifically inhibited NF-kappa B-dependent transcription in vitro; and 3) different NF-kappa B complexes and interferon regulatory factor 1 cooperated to stimulate transcription in vitro through the PRDIII-PRDI-PRDII virus-inducible regulatory domains of the IFN-beta promoter. These results demonstrate the role of NF-kappa B protein dimerization in differential transcriptional activation in vitro and emphasize the role of cooperativity between transcription factor families as an additional regulatory level to maintain transcriptional specificity.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials
