Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Nov;67(5):1994-2001.
doi: 10.1016/S0006-3495(94)80682-4.

Isometric force redevelopment of skinned muscle fibers from rabbit activated with and without Ca2+

Affiliations

Isometric force redevelopment of skinned muscle fibers from rabbit activated with and without Ca2+

P B Chase et al. Biophys J. 1994 Nov.

Abstract

Fiber isometric tension redevelopment rate (kTR) was measured during submaximal and maximal activations in glycerinated fibers from rabbit psoas muscle. In fibers either containing endogenous skeletal troponin C (sTnC) or reconstituted with either purified cardiac troponin C (cTnC) or sTnC, graded activation was achieved by varying [Ca2+]. Some fibers were first partially, then fully, reconstituted with a modified form of cTnC (aTnC) that enables active force generation and shortening in the absence of Ca2+. kTR was derived from the half-time of tension redevelopment. In control fibers with endogenous sTnC, kTR increased nonlinearly with [Ca2+], and maximal kTR was 15.3 +/- 3.6 s-1 (mean +/- SD; n = 26 determinations on 25 fibers) at pCa 4.0. During submaximal activations by Ca2+, kTR in cTnC reconstituted fibers was approximately threefold faster than control, despite the lower (60%) maximum Ca(2+)-activated force after reconstitution. To obtain submaximal force with aTnC, eight fibers were treated to fully extract endogenous sTnC, then reconstituted with a mixture of a TnC and cTnC (aTnC:cTnC molar ratio 1:8.5). A second extraction selectively removed cTnC. In such fibers containing aTnC only, neither force nor kTR was affected by changes in [Ca2+]. Force was 22 +/- 7% of maximum control (mean +/- SD; n = 15) at pCa 9.2 vs. 24 +/- 8% (mean +/- SD; n = 8) at pCa 4.0, whereas kTR was 98 +/- 14% of maximum control (mean +/- SD; n = 15) at pCa 9.2 vs. 96 +/- 15% (mean +/- SD; n = 8) at pCa 4.0. Maximal reconstitution of fibers with aTnC alone increased force at pCa 9.2 to 69 +/- 5% of maximum control (mean + SD; n = 22 determinations on 13 fibers) and caused a small but significant reduction of kTR to 78 +/- 8% of maximum control (mean +/- SD; n = 22 determinations on 13 fibers); neither force nor krR was significantly affected by Ca>2(pCa 4.0). Taken together, we interpret our results to indicate that kTR reflects the dynamics of activation of individual thin filament regulatory units and that modulation of kTR by Ca> is effected primarily by Ca>+ binding to TnC.

PubMed Disclaimer

References

    1. J Muscle Res Cell Motil. 1992 Aug;13(4):383-93 - PubMed
    1. J Gen Physiol. 1989 May;93(5):855-83 - PubMed
    1. J Biol Chem. 1993 Apr 5;268(10):6827-30 - PubMed
    1. J Physiol. 1993 Jan;460:231-46 - PubMed
    1. Biophys J. 1993 May;64(5):1632-7 - PubMed

Publication types

LinkOut - more resources