Aplastic anemia and paroxysmal nocturnal hemoglobinuria: search for a pathogenetic link
- PMID: 7858265
Aplastic anemia and paroxysmal nocturnal hemoglobinuria: search for a pathogenetic link
Abstract
The association of paroxysmal nocturnal hemoglobinuria (PNH) and aplastic anemia (AA) raises the yet unresolved questions as to whether these two disorders are different forms of the same disease. We compared two groups of patients with respect to cytogenetic features, glycosylphosphatidylinositol (GPI)-linked protein expression, protein C/protein S/thrombomodulin/antithrombin III activity, and PIG-A gene expression. The first group consisted of eight patients with PNH (defined as positive Ham and sucrose tests at diagnosis), and the second, 37 patients with AA. Twelve patients with AA later developed a PNH clone. Monoclonal antibodies used to study GPI-linked protein expression (CD14 [on monocytes], CD16 [on neutrophils], CD48 [on lymphocytes and monocytes], CD67 [on neutrophils and eosinophils], and, more recently, CD55, CD58, and CD59 [on erythrocytes]) were also tested on a cohort of 20 normal subjects and five patients with constitutional AA. Ham and sucrose tests were performed on the same day as flow-cytometric analysis. Six of 12 patients with AA, who secondarily developed a PNH clone, had clinical symptoms, while all eight patients with PNH had pancytopenia and/or thrombosis and/or hemolytic anemia. Cytogenetic features were normal in all but two patients. Proteins C and S, thrombomodulin, and antithrombin III levels were within the normal range in patients with PNH and in those with AA (with or without a PNH clone). In patients with PNH, CD16 and CD67 expression were deficient in 78% to 98% of the cells and CD14 in 76% to 100%. By comparison, a GPI-linked defect was detected in 13 patients with AA, affecting a mean of 32% and 33% of CD16/CD67 and CD14 cell populations, respectively. Two of three tested patients with PNH and 1 of 12 patients with AA had a defect in the CD48 lymphocyte population. In a follow-up study of our patient cohort, we used the GPI-linked molecules on granulocytes and monocytes investigated earlier and added the study of CD55, CD58, and CD59 on erythrocytes. Two patients with PNH and 14 with AA were studied for 6 to 13 months after the initial study. Among patients with AA, four in whom no GPI-anchoring defect was detected in the first study had no defect in follow-up studies of all blood-cell subsets (including erythrocytes). Analysis of granulocytes, monocytes, and erythrocytes was performed in 7 of 13 AA patients in whom affected monocytes and granulocytes were previously detected. A GPI-anchoring defect was detected on erythrocytes in five of six.(ABSTRACT TRUNCATED AT 400 WORDS)
Similar articles
-
Impaired hematopoiesis in paroxysmal nocturnal hemoglobinuria/aplastic anemia is not associated with a selective proliferative defect in the glycosylphosphatidylinositol-anchored protein-deficient clone.Blood. 1997 Feb 15;89(4):1173-81. Blood. 1997. PMID: 9028939
-
A cohort study of the nature of paroxysmal nocturnal hemoglobinuria clones and PIG-A mutations in patients with aplastic anemia.Eur J Haematol. 2006 Jun;76(6):502-9. doi: 10.1111/j.0902-4441.2005.t01-1-EJH2467.x. Epub 2006 Mar 9. Eur J Haematol. 2006. PMID: 16529603
-
A pathogenetic link between aplastic anemia and paroxysmal nocturnal hemoglobinuria is suggested by a high frequency of aplastic anemia patients with a deficiency of phosphatidylinositol glycan anchored proteins.Exp Hematol. 1995 Jan;23(1):81-7. Exp Hematol. 1995. PMID: 7995374
-
A new aspect of the molecular pathogenesis of paroxysmal nocturnal hemoglobinuria.Hematology. 2002 Aug;7(4):211-27. doi: 10.1080/1024533021000024094. Hematology. 2002. PMID: 14972783 Review.
-
Relationship between aplastic anemia and paroxysmal nocturnal hemoglobinuria.Int J Hematol. 2002 Feb;75(2):117-22. doi: 10.1007/BF02982015. Int J Hematol. 2002. PMID: 11939256 Review.
Cited by
-
Diagnostic evaluation in bone marrow failure disorders: what have we learnt to help inform the transplant decision in 2024 and beyond?Bone Marrow Transplant. 2024 Apr;59(4):444-450. doi: 10.1038/s41409-024-02213-6. Epub 2024 Jan 30. Bone Marrow Transplant. 2024. PMID: 38291125 Review.
-
Paroxysmal nocturnal hemoglobinuria.Int J Hematol. 2005 Dec;82(5):417-21. doi: 10.1532/IJH97.05140. Int J Hematol. 2005. PMID: 16533745 No abstract available.
-
Detection of CD55- and/or CD59-deficient red cell populations in patients with plasma cell dyscrasias.Int J Hematol. 2002 Jan;75(1):40-4. doi: 10.1007/BF02981977. Int J Hematol. 2002. PMID: 11843289
-
Recent advances in biological and clinical aspects of paroxysmal nocturnal hemoglobinuria.Int J Hematol. 2006 Aug;84(2):104-12. doi: 10.1532/IJH97.06117. Int J Hematol. 2006. PMID: 16926130 Review.
-
Long-term efficacy and safety of eculizumab in Japanese patients with PNH: AEGIS trial.Int J Hematol. 2013 Oct;98(4):406-16. doi: 10.1007/s12185-013-1404-y. Epub 2013 Aug 11. Int J Hematol. 2013. PMID: 23934275 Clinical Trial.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials
Miscellaneous