Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Mar;64(3):1245-51.
doi: 10.1046/j.1471-4159.1995.64031245.x.

The proteins synaptotagmin and syntaxin are not general targets of Lambert-Eaton myasthenic syndrome autoantibody

Affiliations

The proteins synaptotagmin and syntaxin are not general targets of Lambert-Eaton myasthenic syndrome autoantibody

R K Hajela et al. J Neurochem. 1995 Mar.

Abstract

Lambert-Eaton myasthenic syndrome (LEMS) is an autoimmune neuromuscular disease in which impairment of Ca2+ entry into the nerve ending and consequent impaired release of acetylcholine (ACh) results in muscle weakness. The identity of the primary antigenic target molecule(s) of the autoantibodies is uncertain. Electrophysiological studies and 45Ca2+ uptake studies implicate a direct effect on the Ca2+ channel complex at the motor nerve terminal. Some recent studies, however, suggest a more indirect interference caused by binding of autoantibodies to synaptotagmin or syntaxin, molecules presumed to be involved in docking and/or coupling the synaptic vesicles to the Ca2+ channels in the active zone for vesicle exocytosis and transmitter release. Western blot analyses of rat and human brain membrane proteins and pure recombinant synaptotagmin and syntaxin were used to examine directly the targets of LEMS autoantibodies and determine specifically whether or not synaptotagmin and/or syntaxin were general targets in LEMS. IgG from 14 patients with LEMS was used to probe western blots of gels containing synaptotagmin, syntaxin, rat synaptosomal proteins, and human brain membrane proteins. Several similar immunoreactive bands were observed using both rat and human brain membranes. These include high-molecular-weight protein bands whose size would be consistent with being components of Ca2+ channels. No reactive component was observed against either syntaxin or synaptotagmin in IgG of the 14 LEMS patients. However, both human and rat brain membranes contain proteins recognized by antibodies directed against synaptotagmin or syntaxin, indicating their immunologic relatedness and evolutionary conservation. These results suggest that large-molecular-weight proteins consistent with being Ca2+ channel subunits rather than syntaxin and synaptotagmin are general targets of LEMS autoantibodies.

PubMed Disclaimer

Publication types

LinkOut - more resources