Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Oct;46(4):1100-9.
doi: 10.1038/ki.1994.372.

Mechanisms of polymorphonuclear leukocyte mediated peritoneal mesothelial cell injury

Affiliations
Free article

Mechanisms of polymorphonuclear leukocyte mediated peritoneal mesothelial cell injury

S P Andreoli et al. Kidney Int. 1994 Oct.
Free article

Abstract

To determine the susceptibility of human peritoneal mesothelial cells to injury mediated by activated polymorphonuclear leukocytes (PMNs), we exposed cultured human peritoneal mesothelial cells to 1250, 2500, 3750, and 5000 PMNs/mm3 activated with 50 ng/ml phorbol myristate acetate (PMA) or with 10(-7) FMLP/cytochalasin B for one to five hours. PMN adhesion to mesothelial cells was determined with radiolabeled PMNs. Mesothelial cell injury was determined in five different cell lines by measuring ATP depletion and 51chromium release. In each mesothelial cell line, PMN adhesion was significantly (P < 0.001) increased when PMNs were activated; 64 +/- 1.0 to 92.5 +/- 7.0% of the activated PMNs were adherent to mesothelial cells compared to 6 +/- 1.8 to 27 +/- 2.4% of resting PMNs. Mesothelial cells responded to PMN mediated injury with a fall in ATP levels and 51chromium release that was significant (P < 0.05) by three to four hours. At five hours, ATP levels were markedly depressed to 5 to 41% of control values. Increasing concentrations of activated PMNs caused significantly (P < 0.05) greater mesothelial cell injury as determined by ATP depletion and 51chromium release. PMN adhesion, ATP depletion and 51chromium release were significantly (P < 0.01) prevented by an anti-CD18 monoclonal antibody that inhibits the CD11/CD18 adhesion molecule complex on PMNs. Similar injury and protection from injury was demonstrated when mesothelial cells were exposed to PMNs activated with FMLP/cytochalasin B.(ABSTRACT TRUNCATED AT 250 WORDS)

PubMed Disclaimer

Publication types

LinkOut - more resources