Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1994 Jul;8(2):125-33.
doi: 10.1177/08959374940080020201.

In situ models, physico-chemical aspects

Affiliations
Review

In situ models, physico-chemical aspects

J M ten Cate. Adv Dent Res. 1994 Jul.

Abstract

In situ (intra-oral) caries models are used for two purposes. First, they provide information about oral physiological processes. Such information helps to detail our knowledge of the oral ecosystem and to verify conclusions from in vitro experiments. Second, in situ models are utilized to test preventive agents in the phase between laboratory testing and clinical trials. Most investigations involving enamel inserts have been aimed at testing new dentifrices. The experimental designs of such studies usually do not allow one to draw conclusions on physico-chemical processes, e.g., because of single point measurements. Studies of model parameters (lesion type, lesion severity, and de/remineralization in time) constitute only a minority of the research reports. The most striking observation obtained with in situ models has been the significant differences in de/remineralization observed among individuals and, more importantly, within one individual during different time periods and between different sites in the same mouth (for review, see ten Cate et al., 1992). Regardless of this, some general findings can be inferred: During in situ demineralization, up to 62 vol% microns/day may be removed from enamel. For dentin specimens, this value may be as high as 89 vol% microns/day. For remineralization, during fluoride dentifrice treatment, a median deposition rate of 0.7%/day (for lesions with integrated mineral loss values between 2000 and 4000 vol% microns) is found. The rate of deposition seems to be correlated with the extent of the pre-formed lesion. This suggests that the number of sites (crystallite surface) available for calcium phosphate precipitation is an important parameter.(ABSTRACT TRUNCATED AT 250 WORDS)

PubMed Disclaimer

LinkOut - more resources